Tutorial Information:

Tutorial Type: 			COG programming: Output

Target Audience: 		newbies and special interest (text output)

Degree of Explanation: 	detailed

Author Email:			hill@golden.net

What the heck am I reading?

	This is a tutorial on formatting text output generated by code in cogs. When I refer to output, I am specifically referring to the yellow text lines which occur at the top of the player screen during gameplay. The COG reference section in JKSpecs version 0.3 refers very briefly to the commands associated with output, but there isn't much explanation as to their function or use. Through testing and debugging, I've got them all figured out, so trust that everything I write here has already been put to practical and successful use.

	

The forked path: the high and low road of putting out...

	There's two ways to go about sending text and other information to the player during run time: the Print() series of commands and the jkString()Series of commands. The Print() commands, though simple, are also very inflexible in the way they are formatted. The jkString() commands provide that flexibility by allowing you to build a string from a bunch of sources, mixing ascii (text/letters) and numeric data all into one and spitting it out on the same line. An example of this is in multiplayer, when a player dies and the familiar text goes:

"PLAYER_NAME has become more powerful than you can possibly imagine."

 where PLAYER_NAME is an ascii variable depending on what your name is for that game.

	

Quick and Dirty, Harry...	

	Print() commands are quick and dirty, and are the simplest to use. Each Print() command in this group is executed on a separate line, and are formatted "as is", centered on that line. So for example, if the symbol SOME_NUMBER is equal to 5, PrintInt(SOME_NUMBER), when executed, will print a lonely number 5, centered on it's own line at the top of the player screen. In this family of commands are:

Print("ascii") 		- ascii is whatever text you want to display on one line of the screen, and must be 				typed between opening and closing quotations.

PrintInt(int)			- int is any integer number or integer defined symbol.

PrintFlex(flex)		- flex is any decimal number or flex defined symbol.

PrintVector(vector)		- vector is a set of three decimal numbers associated with defining 				movement or some point in space. Often, these numbers are referred to as x, y, 				and z. The output of this command prints three sets of numbers separated by a 				space in the order x, y, z.

jkPrintUNIString(int1, int2)	- int1 is an integer representing the player that the message will be sent to. 				This is often set with a comand like GetLocalPlayerThing() or 				GetSourceRef(). This can also be a negative number representing certain groups 				of players. A (-3) here sends the message to the server AND all clients, a (-2) 				sends only to the clients and a (-1) sends only to the server. I'm positive about the 				(-3) meaning, but (-2) and (-1) meanings are just my best 				guess.	The second integer is a reference to the string found at that 				number's location in the file jkstrings.uni

Examples of use in code and on the screen:

CODE: 	print("Kyle! Get that babelfish out of your ear!");

RESULT:

<top of screen>

Kyle! Get that babelfish out of your ear!

CODE:		print("No the other one! Can't you feel - naskoota wonkapee? Dah fit, dah fit. Dung Jedi...");

		printVector(vectorSet(3.2, 4.5, 2.0));

RESULT:

<top of screen>

No the other one! Can't you feel - naskoota wonkapee? Dah fit, dah fit. Dung Jedi...

3.200 4.500 2.000

jkString ... and what the heck is a concatanate?

	The jkString series of commands store pieces of information in a buffer (that's like the imaginary place where lost socks go, only you can find what's put in a buffer), which can then be outputted as one line at the top of the screen. This process of gluing bits of information together to make one string is called concatanation. To concatanate something is to join it on at the end of something else.

	It's important to note that a string is just a name for a grouping of letters and numbers, only the numbers in a string have no "value" and as such can't be used in math functions or to represent numerical data. Always remember that a number type symbol like an integer or a flex can be converted into a string, but a string number can't be converted into a numerical value. (at least not in JK...)

	JKString commands require a little more thought and a little more coding to make them work right. It's a three step process:

	1.	Clear the buffer of anything leftover from a previous use (neglecting this can be a real pain in the 		buffer..)

	2.	Concatanate all your string bits

	3.	Chill and serve....I mean, send your buffered string to the player's screen.

	The following is a list of all the jkString commands and commands related to this method of output:

jkStringClear()			- This clears the buffer, providing a blank space in which to create our 					string.

jkStringConcatAsciiString("ascii") 	- similar to the Print("ascii") command, everything typed in 					quotations will be added to the end of the string created thus far.

jkStringConcatInt(int)		- int is any integer number or integer defined symbol concatanated to the 					string.

jkStringConcatFlex(flex)		- flex is any decimal number or flex defined symbol concatanated to the 					string.

jkStringConcatSpace()		- creates a black hole in the string. I mean...it adds a single empty space to 					the end of the string. Used to separate concatanated pieces so they aren't 					all squished together.

jkStringConcatPlayerName(int)	- the integer is the ID number of a player in multiplayer. The concatanate, 					however, will be the actual player name, not the number. The Id number 					is usually acquired using GetLocalPlayerThing() or get SourceRef() or 					another verb with a like function.

jkStringConcatVector(vector)	- concatanates a set of three decimal number represented in a VectorSet() 					or by a vector symbol.

jkStringConcatUNIString(int)	- the integer here represents the line number in jkstrings.uni where a pre-					typed string can be found, and concatanates that string to the buffered 					string

jkStringOutput(int1, int2)		- this creates the magic. Int1 represents WHO receives the string. This 					can be the ID number of a player, or in the case of a negative number, 					certain groups of players, the same as jkPrintUniString(). *The second 					integer is most often represented as a (-1) in LEC examples, and as such, it 					is unknown at this time what it represents. I've tested this command with 					different values for int2, positive and negative, with no apparent change in 					output.

GENERAL EXAMPLE:

A string buffer filled with concatanates like this: ASCII --> SPACE --> INT -->ASCII-->SPACE-->INT--> SPACE-->ASCII

Might be represented like this:

ASCII="There are" SPACE=" " INT="3" ASCII="apples," SPACE=" " INT="2" SPACE=" " ASCII="of them are red."

And would be out putted like this:

<top of screen>

There are 3 apples, 2 of them are red.

So if we had some code that calculated teh number of apples and another that calculated how many of those are red, we could display those calcualations to the player in a very comprehensive way. On a creative note, this is an excellent way of creating special use cogs like a rangefinder or some other instrument that can communicate

useful data to the player.

	I've left out two commands on purpose - jkStringConcatFormattedInt(int1, int2) and jkStringConcatFormattedFlex(flex, int). The reason is quite simple - I don't fully understand what they do differentlyy from jkStringConcatInt and and flex. I have tested them thoroughly using various integer values for the second parameter to no avail - differing numbers produce same results. It IS known for sure that two argunments must be present and that the second argument must be an integer, because in testing, omitting an argument forced a null result from FormattedInt and a zero decimal zero result from formatted flex. Maybe they posess the key to unlocking all the cogging mysteries out there - but for now they're not really all that important.

	So, with that I bid you good cogging and look forward to seeing some well versed and textually immaculate cogs!

MastaJedi

JK: Adventure and Role Playing Group

Jedi Legacy

www.jediknight.gagames.com

	

